热门搜索:

上海西邑电气技术有限公司成立于1996年。在西门子公司广大同仁和工控领域各界朋友的关怀下埋头发展,一路走来已成西门子合作伙伴中的佼佼者。总部设在上海,办公面积1500多平方米,员工150余人。

    西门子变频器ADB板

    更新时间:2024-12-24   浏览数:289
    所属行业:电气 工控电器 DCS/PLC系统
    发货地址:上海市金山区  
    产品规格:西门子变频器ADB板
    产品数量:100.00个
    包装说明:全新原装
    价格:面议
    产品规格西门子变频器ADB板包装说明全新原装

    西门子变频器ADB板

    介绍变频器在垃圾焚烧发电厂的应用实例,介绍变频器常见故障原因处理和日常维护事项。


    火力发电厂中各种辅机为满足主机出力波动要求,多数风机和水泵的流量均需要调节,传统的调节方式为节流调节,存在反应慢、调节精度低、能耗大等问题。而变频器作为一种电能控制装置,以其调节性能优良、节能效果好等因数,已被广泛应用在电厂的风机、水泵等流量调节和速度调节中。

    变频器在垃圾发电厂应用实例

    1 变频器在引风机应用

    引风机是电厂的重要设备,通过控制引风机的开度调节风量,维持炉膛负压在一定范围内运行。如果炉膛负压太小,炉膛容易向外喷炉内空气,既影响车间环境卫生,又可能危及设备和人员的安全;负压太大,炉膛漏风量增大,增加风机的电能消耗和烟气热量损失。因此控制引风机的开度,稳定炉膛负压,对保证锅炉的安全、经济运行具有十分重要意义。

    环能一厂机组设计出力为6MW,锅炉为机械炉排垃圾焚烧炉,引风机额定风量为95040m3/h、风压为6600Pa,所配的电动机额定功率为250KW,额定电压为380V,额定电流455A,电机调速采用ABB ACS600变频器以实现风机开度调节。

    引风机运行操作主要通过DCS控制,运行方式分为手动控制和炉膛负压PID调节自动控制两种,正常运行时,引风机出口风门挡板全开(**指令状态),由PID调节器通过控制风机转速稳定炉膛负压。所有数字量输入、输出接口模块主要是接受外围远程控制信号,实现引风机的联锁保护、闭锁逻辑和控制功能。同时变频器还对电动机进行保护。

    表1 变频器控制系统部分端子信号清单

    2 变频器在起重机的应用

    垃圾焚烧电厂中所有进厂垃圾都是先存储在垃圾坑里,一般堆放约3~5天,充分发酵后才投入焚烧炉燃烧,在投入时就使用垃圾起重机将垃圾投入给料斗。

    环能一厂起重系统是由两台垃圾起重机组成,每台垃圾起重机都有独立的电动机控制系统和供操作人员使用HMI控制盘和PC机。操作方式分手动或自动以及半自动模式。其中大车电机、小车电机和提升电机均采用芬兰生产的DYNA V55F36变频器进行控制。

    起重机传统的调速方式大多为转子串电阻分级调速,在实际应用中存在以下弊端:

    1)控制精度差。采用电动机转子串电阻调速,属于有级调速,在不同速度段的切换中存在速度跳跃,其控制比较粗糙,定位不准确。

    2)工作可靠性不高。由于在电动机转子侧串接的电阻很多,而在分段调速过程中采用接触器短接上一级电阻,接触器的寿命主要体现在它的机械部分的寿命,常因过流使触点粘在一起,无法实现切换,进而造成**速等事故发生,严重影响系统的可靠性。

    3)维护工作量大。由于采用接触器对电阻进行分段切换,因此必须经常对接触器进行维护,大大增加维护人员的工作强度。

    4)耗能。电动机转子串电阻调速是一种转差功率消耗性的调速方式,在整个调速过程中,大量的电能被消耗在电阻上,非常不经济。

    5)稳定性差。电动机转子串电阻调速,当在低速运行时,稳定性差。因为速度越低,特性越软,负载转矩波动时,引起转速变化大,使运行稳定性差。

    通过采用变频器取代,具有以下优势:

    1)控制精度高。能使交流电动机的调速性能与直流电动机的几乎相等,实现精确控制。

    2)工作可靠性高。变频器采用的是电子器件,寿命长,且有完善的保护功能。

    3)维护工作量大大减少、实现无级调速,调速范围。

    4)节能效果明显。特别是在提升机上,当提升机处于提升状态时,电动机处于电动状态,由于提升属恒转矩负载,其转速降低多大比例节能就为多大比例。当电动机处于下降状态时,电动机处于发电状态,将势能转化为电能。

    变频器常见故障分析及处理

    变频器一般具有高度的智能化水平和完善的故障检测电路,并能对所有的故障进行精确的定位,在HMI界面做出提示。在实际应用中经常遇到故障主要有光纤故障、过电压故障、缺相故障、过热故障、驱动故障等,现就这些故障发生的原因和处理方式作简要分析。

    1 光纤故障

    在变频器中功率单元属于高压部分(动力部分),控制器属低压部分,为实现低压与高压隔离,已保证较高的安全性,同时控制器与功率单元有一定的安全距离,为保证在远距离信号传输中仍然具有很好的抗电磁干扰性能,控制器与功率单元之间采用光纤通信技术,光纤及光纤信号发送/接收器作为控制器与功率单元的通信介质。

    出现光纤故障一般有以下几种情况:

    功率单元与控制器之间的光纤连接头脱落或者接触不良;光纤信号发送/接收器内部积灰严重;光纤折断;光纤通信电路控制板部分器件损坏或者受温度影响工作不稳定,如器件老化、芯片插座松动等。出现光纤故障时,首先需要判断是功率单元侧出现故障还是控制器侧故障,在不明确哪一侧的情况下,应在变频器断电后,根据HMI界面的故障记录用备用功率单元替换所怀疑有故障的功率单元,然后重新上电,如果故障消失则可判定属功率单元故障,如果故障依然存在则应是控制单元故障,此时应更换控制器中的光纤通信板。

    2 过电压故障

    变频器过电压故障是各种功率单元内直流母线电压达到危险程度后采取的保护措施,在处理此类故障时要分析清楚故障原因,有针对性地采取相应的措施去处理。

    正常情况下,直流母线为三相交流输入线电压的峰值,即如输入为AC400V,则直流母线电压Ud=1.411×400=565.6V。在过电压发生时,直流母线的储能电容电压将上升,但电压上升到一定值时(通常为正常值的10%~20%),变频器的过电压保护动作。

    而引起变频器中间直流回路过电压的原因主要有两方面:

    1)来自电源输入侧的过电压。

    正常情况下输入电压波动在额定电压-10%~10%以内,但是特殊情况下,电源电压波动可能过大,由于直流母线电压随电源电压上升,达到保护值时变频器就因过电压保护跳闸。电源输入侧过电压主要由于电源侧冲击过电压,如雷电引起的过电压、补偿电容在投入或退出时形成的过电压等。主要特点是电压变化率du/dt和幅值都很大,此时较好断开电源进行检查处理。

    2)来自负载侧过电压。

    由于某种原因使电动机处于再生发电状态,即电动机实际转速比变频器频率决定的同步转速高时,负载的传动系统所储存的机械能经电动机转换成电能,通过各个功率单元逆变桥的四个IGBT管中的续流二极管返回到直流母线,这些能量导致直流回路的电解电容的电压迅速上升引起过电压。

    其现场操作的主要处理方法是延长变频器减速时间参数,当变频器拖动大惯性负载时,由于减速时间设定过小,在减速过程中,变频器减速速度过快,而负载由于依靠其自身阻力减速的比较慢,使负载拖动电动机的速度大于变频器频率所对应的速度,电动机处于发电状态。

    有些变频器还设置防止减速过电压功能,即在减速过程中,检测直流母线电压达到一定值时,变频器的输出频率不再下降,暂缓减速,待直流母线电压下降后再继续减速,避免出现直流母线过电压。

    3 缺相故障

    缺陷故障保护是指变频器各功率单元交流输入侧电压三相中至少有一相缺少而采取的保护,出现缺相时会引起整流模块发热、过流以及直流母线电压降低,虽然在缺相状态下设备也能继续运行,但整流桥中个别器件电流过大及电解电容的脉冲电流过大,长期运行将对变频器的寿命和可靠性造成不良影响,应及时处理。处理时应根据具体原因进行。

    主要原因有:电网发生故障或输入电源缺相;移相整流变压器二次侧短路;整流变压器三相进线接线螺栓松动,或者整流变压器与功率单元的连接线路松动故障等;缺相检测保护电路异常,这种情况更换检测板即可。

    4 过热故障西门子变频器ADB板

    变频器在运行中由于功率器件整流桥、IGBT管、移相整流变压器等自身消耗功率会散热,内部温度较高,如果热量不及时散出,长期对变频器的寿命大大降低,严重时会引起元器件损坏,功率单元过热保护主要是功率器件在一定电流下运行,器件基板的温度达到规定的温度时采取的一种保护措施,变频器元器件消耗功率主要包括通泰损耗和开关损耗,其结果使基板温度tc和半导体结温tj上升。

    一般能引起功率单元过热原因有以下几方面:环境温度过高,散热效果差,变频器内部温度高;测温元件连接线断开或元件出现故障;功率单元冷却风机故障;进风口或出风口不通畅,风道阻塞或滤网堵塞;变频器长时间过载运行;过温监测电路出现异常。

    变频器出现过热故障时,可按以上原因排除处理。

    5 驱动单元故障

    IGBT是变频器较关键的功率器件,具有电流容量大、工作频率范围宽能优点。对IGBT管的保护一般都为过电流保护,即IGBT保护电路检测输出端或者直流环节的总电流,当电流**过设定值时,比较器翻转封锁所有的IGBT驱动器的输入脉冲,使输出电流降为零,同时给CPU处理器发出故障信号。

    通常引起变频器驱动故障原因有以下几种:变频器输出短路;功率单元内IGBT被击穿;驱动检测电路损坏;检测电路被干扰。

    通常情况下,变频器出现驱动故障后,要杜绝轻易贸然复位变频器后再次重新启动,以防止变频器的二次损坏。正确处理措施是根据监控界面的故障定位找到相应的模块,拆开检查IGBT是否损坏。

    具体判断方法是:找到功率单元内部直流母线的正极V+及负极V-,用数字万用表二极管档,将黑表笔接到V+,红笔分别接到U、V上,此时表指示数值应该显示在0.4左右,反向则应该显示无穷大;将红表笔接到V-上,重复以上步骤,应得到相同的结果,否则可判断IGBT管已损坏。

    变频器维护和检查项目及注意事项

    1 变频器虽然具有较高的可靠性,但现场的维护检查也是决定设备长期稳定运行的重要因数,其日常检查主要项目如下

    检查所属辅机(电动机运转正常);检查变频器温度、通风情况,保证变频器良好的通风散热条件;检查变频器是否有异常声响、异味,柜体是否发热、异常震动;检查输入/输出电压、电流情况是否在正常范围内;注意在柜子周围不应有蒸汽等气源,否则会严重损坏变频器;新入变频器一个月后,应将主回路的电缆连接紧固;以后半年紧固一次,用吸尘器清除柜内灰尘;如果变频器长期未投入使用,建议半年通电一次,每次时间不少于1小时;当空气湿度较大是否也应上电,这样可以防止变频器内器件及电路板受潮,又可激活电解电容,防止变频器内的电解电容发生漏电、耐压降低的劣化现象。2 进行变频器维护和检查应注意以下几方面

    变频器运行环境要防静电和电磁干扰,湿度、温度、粉尘均需达到规定要求,盘柜所有电缆进线应封堵,运行过程不允许长时间打开柜门;在检查过程应注意变频器功率单元中的电容器残余电压,经充分放电后才可进行;不允许用绝缘电阻表测量变频器的输出绝缘,否则会使功率单元的元器件受损。结论

    实践证明,变频器在垃圾发电厂辅机的应用,不仅可以提高其自动化程度,同时也起到很好的节能效果。但由于垃圾发电厂自身特点(如车间含有较多的酸性和腐蚀性气体、运行调整操作频繁等)约束,在实际运行中,为确保变频器工作可靠性以及使用周期,应加强对变频器运行维护,故障时应能根据报警信息准确判断故障性质,及时采取有效措施,以便**时间恢复生产。

    在变频器维修的过程中,变频器故障报警提示,显示现场电路电机没有短路,检查电机没有问题,换上备用变频器后正常工作。经常遇到需要将变频器的元器件一件一件的拆解下来,变频器元器件的拆卸是一个**的问题。

    1. 弱电部分

    弱电部分是高密度排布,由于元器件的体积小,在拆卸时稍不尽心,就会损坏线路板,造成严重后果。两个引脚的元件可以用电烙铁,三个以上引脚的器件用电。 烙铁困难。贴片器件用热风机,多角双排插脚。

    2. 强电部分

    强电部分的两脚元件可以用电烙铁,多脚器件、大功率模块,拆卸困难。为了解决拆卸问题,可以用钢锯将模块锯掉,然后在电烙铁将每个引脚拆下。

    下面分享一个变频器维修拆解的案例

    图一:正面照,几块板子,别的没啥。

    图二:上面有个元器件坏了,有烧的痕迹

    图三:看到有模块烧的痕迹

    图四:下面白色的模块坏了

    用万用表测试了下,更换贴片电阻一个,更换模块一个,花了400多,节约1200,按照一个维修成本算的。

    变频器是现在常用的电机控制设备,很多的大型工厂,或者其他行业,都会采用变频器,那么什么是变频器呢,变频器又有什么作用于特点呢?

    变频器的定义与原理

    变频器是通过变频控制技术,综合电子电路技术,通过改变输入电压的频率来改变电机运行速度的设备。

    变频器的工作原理就是我们常说的整流电路、滤波电路及逆变电路技术,加上一些对电路的保护,就形成了我们常见的变频器。

    我们先看下电机转速的计算公式,n=60f/p (n:转速,f:电源频率,p:电机较对数)

    从公式里面我们可以看出,p电机较对数是不可以改变的,所以我们只要改变电源的频率f就可以实现电机的调速。如何改变这个电源频率f,我们就需要一整套的整流逆变电路,进行转换了。

    整流电路整流电路的作用是将我们输入的交流电压,通过整流桥,转换成直流电源,整流电路重要的元件就是我们经常说的二极管,靠二极管的分别导通,实现了我们的整流过程。

    滤波电路主要采用电容滤波形式,滤波电路主要的作用是对整流之后的电源进行滤波,实际上也相当于一种保护电路,减少整流电路输出的电压或者电流的波动

    逆变电路逆变电路的作用于整流电路的作用恰恰相反,它将滤波电路输出的直流电,转换成电压和频率都可调的交流电源。

    保护电路包括变频器的一些气动电路,制动电路,保护电路,主要是保护变频器的工作状态。

    变频器频率控制源

    想要改变变频器的频率,我们就应该给变频器一个控制源,对于变频器的控制源有三种控制方式:

    多段速的开关量控制很多的变频器都有这个功能,就是通关开关,进行加减速,可以将速度分成几个阶段,然后按一次按钮加一次,按另一个按钮减一次,可以在变频器内部设定固定的速度区间。

    模拟量输入对于模拟量是常见的控制变频器的形式,我们很多的时候都需要去生产过程中的某一参数恒定。比如恒压供水系统。水箱液位控制系统。我们在生产过程中,需要检测某一模拟量的值,比如管道供水的压力,或者水箱的液位高度,然后将模拟量直接输送给变频器的模拟量入口,通过变频器自己的计算,来控制电机的速度。模拟量的下限。对应电机的较高速。模拟量的上限对应电机的较低速。

    通讯接口我们的变频器现在都带通讯接口的,我们可以通过上位机,比如PLC,与变频器通讯,在PLC里面写程序,然后通过标准协议方式,比如modbus RTU协议,进行数据的传送,PLC将控制的内容传送给变频器,变频器将实时值返回给PLC。

    对于变频器的使用现在越来越广泛了,市面上的各大厂家也比较多,比如西门子V90系列,ABB的ACS510系列等等,功能基本相同,只是设置的方式有一些区别而已,我们大家在拿到变频器设备后,应该先研读设备的说明书,安装方式,设置方式等等,设备的说明书会很详细的告诉大家如何去进行设备的给定信号设置的。感谢你的阅读,希望能帮到您。西门子变频器ADB板




    http://zx2015888.cn.b2b168.com