凡在上海西邑电气技术有限公司采购西门子产品,均可质保一年,假一罚十
花30秒询价,你会知道什么叫优势;花60秒咨询,你会知道什么叫服务;
合作一次,你会知道什么叫质量!以质量求生存,以信誉求发展。
我司将提供*的质量,服务作为自已较重要的责任。
2019年3月11日至13日,西门子以“用数字化创造**空间”为主题亮相*四届中国国际智能建筑展览会,全面展示了新一代智能楼宇综合管理解决方案,基于云架构的通用控制器,传感器和温控器系列产品以及针对酒店、办公楼宇和家居等不同应用场景推出的解决方案。
西门子(中国)有限公司执行副总裁兼楼宇科技集团总经理邵康文表示:“随着物联网、大数据分析及BIM(楼宇信息化模型)等技术在楼宇行业的应用,智能楼宇的发展上升到了一个新高度。作为楼宇数字化的***者,西门子致力于通过持续不断的创新科技与应用将数字化的力量注入楼宇的设计、建造及运营之中,以全面、创新的楼宇产品和解决方案满足客户个性化、智能化的需求,打造安全、舒适、绿色和高效的**空间,推动中国楼宇市场的数字化转型。”
新一代智能楼宇综合管理解决方案:实现简单灵活的楼宇自动化管理
此次推出的新一代智能楼宇综合管理解决方案涵盖多套楼宇智能化控制系统,**兼容智能照明和房间控制等系统。该解决方案包括智能操作站Desigo? Control Point、智能楼宇管理平台Desigo? CC、智能房间控制系统Desigo? TRA和智能照明控制系统GAMMA instabus KNX,可实现简单灵活的楼宇自动化管理。Desigo? CC是西门子基于数十年的行业经验开发的先进楼宇控制平台,具备*的楼宇系统整合能力。在使用上,该平台不仅为用户提供智能导航功能,易于学习和使用,用户还可以根据自身需求定制专属界面,快速有效获得关键信息。此外,作为一款完全开放的平台,Desigo? CC更具灵活性与兼容性。智能操作站Desigo? Control Point是基于Desigo? CC平台开发出的中小型楼宇管理站,具有操作简单快速、显示直观和24小时随时随地访问等优势。智能房间控制系统Desigo? TRA可实现房间供暖、通风、空调、照明和遮阳功能之间的联动,在充分满足用户需求并提供较佳的室温、空气质量和光照条件的情况下,合理节约能源。在现代化建筑中,空调与照明系统的能耗很大,优化照明控制可以节约30%至50%的照明用电。智能照明控制系统GAMMA instabus基于KNX技术标准,在确保舒适的工作环境的同时,较大限度地降低照明能耗。
基于云架构的通用控制器:让室内环境控制变得简单和智能
西门子这款通用控制器具有通用性、易用性、先进性和经济性等优势。通用的通信接口大大提高了工程设计、调试和安装的灵活性且兼容多种输入输出。基于先进的网络架构技术,该控制器为用户提供形象的图像化编程工具以及*任何硬件的模拟器调试。基于云架构编程和维护平台,可实现编程平台的在线升级。*实际的外围设备连接,便可轻松实现整个设备的模拟调试。此外,该通用控制器还具有楼宇设备通用的特点。
房间传感器和温控器系列产品:关注室内环境,共享健康生活
提升居住品质,抗击室内PM2.5和PM10空气污染,西门子在本次展会上展出PM2.5 微尘传感器,配合CO2、 VOC和温湿度控制,组成全面健康室内环境的解决方案。该解决方案涵盖PM2.5控制、CO2浓度控制、检测有害气体的排放、温湿度控制,可以降低产生肺部疾病的风险,减少感冒和流感的发生。房间温控器可覆盖供热、通风和制冷应用,产品线广泛,满足用户不同需求。
针对酒店、办公楼宇及家居的不同应用场景推出的解决方案
每一家酒店都具有自己的*特之处,西门子充分了解业主需求,凭借丰富的楼宇行业专业知识以及对酒店工作流程的理解,实现更高级别的“待客之道”。新一代楼宇自动控制为酒店行业客户提供先进的管理手段,打造“看不见”的礼宾服务,实现客人从入住到离店的全流程自动控制;创新的楼宇节能理念,在不牺牲用户舒适体验的前提下,通过精细化和按需控制,实现更高效率等级的楼宇节能。
在人们对办公环境要求日渐提高的当下,西门子可为商业楼宇提供一体化解决方案。该解决方案利用Desigo? CC强大的集成分析管理平台,在基于控制器三层神经元自适应算法来强化节能需求,优化时间策略,满足公共空间、开放办公空间和会议空间等多种空间类型的节能需求,实现按需控制的策略。一体化控制面板可轻松进行场景切换,在提升用户体验的同时,进行空间的合并和功能的分割,通过数字化为用户提供绿色舒适的办公环境。
在家居控制方面,GAMMA instabus KNX智能控制系统为用户打造包括智能家居云平台、访客确认和家居安全、家居控制和显示以及数字社区的数字化家居网络。用户通过手机、平板和电脑可轻松对家居环境、灯光场景、窗帘与地暖空调进行控制。GAMMA instabus KNX智能控制系统采用标准化技术,具有稳定可靠的系统,兼具开放兼容性强的优势,为用户构造舒适、安全的数字化智慧空间。
中国国际智能建筑展览会,创始于2016年,是中国智慧城市、智能建筑领域的专业国际性展会。
西门子MM4系列变频器都集成了串行接口,支持USS通信协议,通过USS协议可以对变频器进行控制和读写变频器参数。使用S7-300PLC有以下两种通讯方案:
1. 按照USS协议要求编写通讯报文,计算BCC校验,适用于从站数量比较少,较简单的应用;
2. 采用DriveES SIMATIC软件提供的S7-300库程序,自动生成从站轮询表程序,适用于从站数量比较多,较复杂的应用。
本文主要介绍通过**种方案实现CPU314-2PtP与MM440的USS通讯。使用S7-300编写USS通讯程序分为以下几个步骤:
1. 依据USS协议编写报文;
2. 使用S7-300提供的串口数据发送程序发送USS报文;
3. 使用S7-300提供的串口数据接收程序接收USS报文;
4. 依据USS协议分析接收到的报文。
本文根据这4个步骤编写了如下内容:*1节简单介绍USS协议内容,了解USS协议报文格式;*2节根据USS协议列举了4条报文;*3节介绍PLC和变频器USS通讯的硬件组态;*4节介绍通过调用PLC中的发送和接收功能块实现USS协议报文的发送和接收。
1 USS协议介绍
USS协议是西门子专为驱动装置开发的通信协议。USS的工作机制是,通信是由主站发起,USS主站不断循环轮询各个从站,从站根据收到的指令,决定是否响应主站。从站不会主动发送数据。从站在以下条件满足时应答主站:接收到主站报文没有错误,并且本从站在接收到主站的报文中被寻址,上述条件不满足或者主站发出的是广播报文,从站不会做任何响应。USS的字符传输格式为11位,其中1位起始位、8位数据位、1偶校验、1位停止位。如下表所示:
起始位
|
数据位
|
校验位
|
停止位
|
1
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
偶X1
|
1
|
LSB
|
MSB
|
USS字符帧结构
USS协议的报文由一连串的字符组成,协议中定义了它们的功能,如下表所示:
STX
|
LGE
|
ADR
|
有效据区
|
BCC
|
1
|
2
|
3
|
…
|
n
|
USS报文结构
? STX:长度1个字节,总是为02(Hex),表示一条信息的开始;
? LGE:长度1个字节,表明在LGE后字节的数量,上表中黄色区域长度;
? ADR:长度1个字节,表明从站地址;
? BCC:长度1个字节,异或校验和,USS报文中BCC前面所有字节异或运算的结果;
? 有效数据区:由PKW区和PZD区组成,如下表所示。
PKW区
|
PZD区
|
PKE
|
IND
|
PWE1
|
PWE2
|
…
|
PWEm
|
PZD1
|
PZD2
|
PZD1
|
PZDn
|
USS有效数据区
PKW区用于主站读写从站变频器参数:
? PKE:长度一个字,结构如下表,任务或应答ID请参考《MM440使用大全》*13章。
Bit15- Bit 12 Bit 11 Bit 10-Bit 0
Bit15- Bit 12
|
Bit 11
|
Bit 10-Bit 0
|
任务或应答ID
|
0
|
基本参数号PNU
|
PKW结构
变频器参数号<2000时,基本参数号PNU=变频器参数号,例如P700的基本参数号PNU=2BC(Hex)(700(Dec)=2BC(Hex))。
变频器参数号>=2000时,基本参数号PNU=变频器参数号-2000(Dec),例如P2155的基本参数号PNU=9B(Hex)(2155-2000=155(Dec)=9B(Hex))。
? IND:长度一个字,结构如下表。
Bit15- Bit 12
|
Bit 11- Bit 8
|
Bit 7 - Bit 0
|
PNU扩展
|
0(Hex)
|
参数下标
|
IND结构
变频器参数号<2000时,PNU扩展=0(Hex)。
变频器参数号>=2000时,PNU扩展=8(Hex)。
参数下标,例如P2155[2]中括号中的2表示参数下标为2。
? PWE:读取或写入参数的数值
PZD区用于主站与从站交换过程值数据:
? PZD1: 主站?从站 控制字
主站?从站 状态字
? PZD2: 主站?从站 速度设定值
主站?从站 速度反馈值
? PZDn: MM430/440支持较多8个PZD,MM420支持较多4个PZD
根据传输的数据类型和驱动装置的不同,PKW和PZD区的数据长度不是固定的,可以通过P2012、P2013 设置。本例采用4PKW,2PZD报文格式。
2 USS协议报文定义
本文通过发送4个不同功能的报文来演示自定义USS报文的方法,USS协议详细说明请参照《MM440使用大全》*13章。
例1.把参数P2155[2]的数值修改为40.00Hz
字节数
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
16
|
发送报文
|
2
|
0E
|
1
|
30
|
9B
|
80
|
2
|
42
|
20
|
0
|
0
|
4
|
7E
|
0
|
0
|
3C
|
应答报文
|
2
|
0E
|
1
|
20
|
9B
|
80
|
2
|
42
|
20
|
0
|
0
|
FB
|
31
|
0
|
0
|
9C
|
报文解释:
STX
|
Byte1
|
起始字符
|
LGE
|
Byte2
|
报文长度(字节3到字节16共14个字节)
|
ADR
|
Byte3
|
从站地址
|
PKW
|
Byte4-5
|
PKE内容:
|
Bit15- Bit 12(任务ID) =3(Hex),修改参数数值双字
|
Bit15- Bit 12(应答ID) =2(Hex),传送参数数值双字
|
Bit10- Bit 0(基本参数号PUN)=2155-2000(Dec)=9B(Hex)
|
Byte6-7
|
IND内容:
|
Bit15- Bit 12(PNU扩展) =8(Hex),参数号大于2000
|
Bit7- Bit 0(参数下标)=2(Hex),P2155[2]
|
Byte8-11
|
参数值,42 20 00 00(Hex)=40.0(浮点数)
|
PZD
|
Byte12-13
|
PZD1
|
Byte14-15
|
PZD2
|
BCC
|
Byte16
|
异或校验和
|
注:黄色标记表示应答报文中的内容
例2.读取参数P0700[0]的数值
字节数
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
16
|
发送报文
|
2
|
0E
|
1
|
12
|
BC
|
0
|
0
|
0
|
0
|
0
|
0
|
4
|
7E
|
0
|
0
|
D9
|
应答报文
|
2
|
0E
|
1
|
12
|
BC
|
0
|
0
|
0
|
0
|
0
|
5
|
FB
|
31
|
0
|
0
|
6C
|
报文解释:
STX
|
Byte1
|
起始字符
|
LGE
|
Byte2
|
报文长度(字节3到字节16共14个字节)
|
ADR
|
Byte3
|
从站地址
|
PKW
|
Byte4-5
|
PKE内容:
|
Bit15- Bit 12(任务ID) =1(Hex),读取参数数值
|
Bit15- Bit 12(应答ID) =1(Hex),传送参数数值单字
|
Bit10- Bit 0(基本参数号PUN)=700(Dec)=2BC(Hex)
|
Byte6-7
|
IND内容:
|
Bit15- Bit 12(PNU扩展) =0(Hex),参数号小于2000
|
Bit7- Bit 0(参数下标)=0(Hex),P700[0]
|
Byte8-11
|
参数值,5(Hex)=5(Dec)
|
PZD
|
Byte12-13
|
PZD1
|
Byte14-15
|
PZD2
|
BCC
|
Byte16
|
异或校验和
|
注:黄色标记表示应答报文中的内容
例3.不需要读写参数只发送停止变频器报文
字节数
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
16
|
发送报文
|
2
|
0E
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
4
|
7E
|
0
|
0
|
77
|
应答报文
|
2
|
0E
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
FB
|
31
|
0
|
0
|
C7
|
例4.不需要读写参数只送启动变频器、设定频率50Hz报文
字节数
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
16
|
发送报文
|
2
|
0E
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
4
|
7F
|
40
|
0
|
36
|
应答报文
|
2
|
0E
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
FF
|
34
|
3F
|
FF
|
6
|
例3、4报文比较简单只需要定义PZD中的内容,PKW区内容可以设置为0。
请注意:如果按照以上4个例子发送报文可能会收到与例子中不一样的应答报文,这并不代表报文存在问题,可能由于变频器状态不同或参数设置不同造成。例子报文中已经计算了BCC校验的值,如果使用其他的报文需要自己计算BCC校验。
3 硬件组态
MM4系列变频器提供的串行接口为RS485接口,S7-300 PLC有3种通讯模块支持RS485接口:
1. 采用带有集成RS485接口的CPU例如CPU31X-2PtP;
2. RS485接口的CP340通讯模块;
3. RS485接口的CP341通讯模块;
以上三种模块都可以通过下表中的接线方式与MM4变频器连接,本文中采用1台CPU314-2PtP与1台MM440通讯。
信号
|
CPU314-2PtP
|
MM430/MM440
|
MM420
|
RS485接口针脚
|
端子
|
端子
|
P+
|
11
|
29
|
14
|
N-
|
4
|
30
|
15
|
S7-300 RS485接口与MM440 USS接线
3.1 PLC硬件组态
1) 首先打开STEP7新建项目并插入CPU314-2PtP。
2) 双击CPU314-2PtP的X2端口PtP,打开PTP属性对话框General栏,Protocol复选框中选择“ASCII”协议。
3) Addresses栏中记录起始地址“1023”,在后面的编程中使用。
4) Transfer栏中设置通讯速率“9600bps”,报文格式:“8”位数据位,“1”位停止位,“Even”偶校验,数据流控制选择“None”。
5) End Delimiter栏中设置接收报文结束方式“After character delay time elapses”利用两个报文的间隔时间来判断报文是否结束,并设置字符延时时间“4ms”(该时间可使用默认设置,默认设置时间随通讯速率不同时间也不同)。
6) Signal Assignment栏中设置串行通信接口信号模式为“Half Duplex(RS-485)Two-wire Mode”半双工两线制RS485模式,空闲状态信号状态“R(A)0v、R(B)5V”。
通过以上步骤完成对CPU314-2PtP串行接口的基本设置,如需更详细的信息请参照CPU314-2PtP手册。
3.2 变频器参数设置
与通信有关的变频参数:
参数
|
设置值
|
功能说明
|
P0700
|
5
|
命令源选择:com链路USS通讯
|
P1000
|
5
|
频率设定源选择:com链路USS通讯
|
P2009
|
0
|
USS规格化:不规格化
|
P2010
|
6
|
USS波特率:9600bps
|
P2011
|
1
|
USS地址:1
|
P2012
|
2
|
PZD长度:2个字
|
P2013
|
4
|
PKW长度:4个字
|
r2024~r2031
|
只读
|
USS诊断数据
|
以上参数只对与变频器USS通讯相关的参数进行介绍,变频器其他参数设置请参照《MM440使用大全》。
4 USS通讯编程
4.1 CPU314-2PtP串行接口发送和接收程序
CPU314-2PtP调用系统功能块SFB60和SFB61进行串行通讯接口数据的发送和接收,SFB60与SFB61系统功能块已经包含在CPU中,只需在OB1中直接调用并分配背景数据块即可。在本例中分配DB60为SFB60的背景数据块,在OB1中调用程序:
在SFB60发送通信块中需要对下列参数进行赋值:
REQ:
|
发送请求,每个上升沿发送一帧数据。
|
R:
|
终止发送。
|
LADDR:
|
PtP串口的起始地址,请查看PLC硬件配置中,PtP属性对话框Addresses栏址中显示的数值,本例中为“1023”,转化为16进制数为W#16#3FF。
|
DONE:
|
发送完成输出一个脉冲。
|
ERROR:
|
发送错误输出1。
|
STATUS:
|
发送块状态字。
|
SD_1:
|
发送数据区起始地址,发送数据区定义为DB1.DBB0开始的n个字节。
|
LEN:
|
发送字节的长度。
|
分配DB61为SFB61的背景数据块,在OB1中调用程序:
在SFB61接收通信块中需要对下列参数进行赋值:
EN_R:
|
接收使能。
|
R:
|
终止接收。
|
LADDR:
|
PtP串口的起始地址,请查看PLC硬件配置中,PtP属性对话框Addresses栏址中显示的数值,本例中为“1023”,转化为16进制数为W#16#3FF。
|
NDR:
|
接收到新数据输出一个脉冲。
|
ERROR:
|
接收错误输出1。
|
STATUS:
|
接收块状态字。
|
RD_1:
|
接收数据区起始地址,接收数据区定义为DB2.DBB0开始的n个字节。
|
LEN:
|
接收到数据的长度。
|
4.2 通过发送程序发送定义好的USS报文
将例子中的报文按字节顺序传送到从DB1.DBB0开始的16个字节中,设置MW104=16,当M100.0上升沿时PLC即发送一帧USS报文。如果变频器接收到的报文无误就会返回一条响应报文,需要将M200.0置1 PLC就会接收到响应报文,并把报文存储到从DB2.DBB0开始的16个字节中。
4.3使用S7-300 PLC编写BCC校验程序
在USS通讯中变频器在收到主站发送的报文后会重新计算报文的BCC校验,如果计算结果与报文传送的BCC校验不一致,那么表明变频器接收到的信息是无效的,变频器将丢弃这一信息,并且不向主站发出应答信号。所以正确计算BCC校验尤为重要。前面提到的4个例子报文中已经计算好了BCC校验,下面给出利用S7-300 PLC编程计算15个字节的BCC校验的程序。
15字节的BCC校验程序
程序中将DB1.DBB0到DB1.DBB14中的内容依次进行异或计算,并把计算结果保存到DB1.DBB15中。
西门子S7-1200 PLC在当前的市场中有着广泛的应用,作为常与变频器共同使用的PLC,其与西门子MM440 变频器的USS通信一直在市场上有着非常广泛的应用。本文将主要介绍如何使用USS通信协议来实现S7-1200与MM440变频器的通信。
1. USS通信介绍
1.1. USS协议特点
USS (Universal Serial Interface, 即通用串行通信接口) 是西门子专为驱动装置开发的通信协议。USS 协议的基本特点如下:
? 支持多点通信(因而可以应用在 RS 485 等网络上)
? 采用单主站的“主-从”访问机制
? 每个网络上较多可以有 32 个节点(较多 31 个从站)
? 简单可靠的报文格式,使数据传输灵活高效
? 容易实现,成本较低
USS 的工作机制是,通信总是由主站发起,USS 主站不断循环轮询各个从站,从站根据收到的指令,决定是否以及如何响应。从站永远不会主动发送数据。从站在以下条件满足时应答:
-- 接收到的主站报文没有错误,并且
-- 本从站在接收到主站报文中被寻址
上述条件不满足,或者主站发出的是广播报文,从站不会做任何响应。对于主站来说,从站必须在接收到主站报文之后的一定时间内发回响应。否则主站将视为出错。
USS 的字符传输格式符合 UART 规范,即使用串行异步传输方式。USS 在串行数据总线上的字符传输帧为 11 位长度,如表1所示:
表1:USS字符帧
USS 协议的报文简洁可靠,高效灵活。报文由一连串的字符组成,协议中定义了它们的特
定功能,表2所示:
表2:USS报文结构
每小格代表一个字符(字节)。其中:
STX: 起始字符,总是 02 h
LGE: 报文长度
ADR:从站地址及报文类型
BCC: BCC 校验符
净数据区由 PKW 区和 PZD 区组成,如表3所示:
表3:USS净数据区
PKW: 此区域用于读写参数值、参数定义或参数描述文本,并可修改和报告参数的改变 。其中:
-
PKE: 参数 ID。包括代表主站指令和从站响应的信息,以及参数号等
-
IND: 参数索引,主要用于与 PKE 配合定位参数
-
PWEm:参数值数据
PZD: 此区域用于在主站和从站之间传递控制和过程数据。控制参数按设定好的固定格式在主、从站之间对应往返。如:
-
PZD1:主站发给从站的控制字/从站返回主站的状态字
-
PZD2: 主站发给从站的给定/从站返回主站的实际反馈
根据传输的数据类型和驱动装置的不同,PKW 和 PZD 区的数据长度都不是固定的,它们可以灵活改变以适应具体的需要。但是,在用于与控制器通信的自动控制任务时,网络上的所有节点都要按相同的设定工作,并且在整个工作过程中不能随意改变。
注意:
对于不同的驱动装置和工作模式,PKW 和 PZD 的长度可以按一定规律定义。 一旦确定就不能在运行中随意改变 ;
PKW 可以访问所有对 USS 通信开放的参数;而 PZD 仅能访问特定的控制和过程数据;
PKW 在许多驱动装置中是作为后台任务处理,因此 PZD 的实时性要比 PKW 好。
1.2. S7-1200 USS通信简介
CM 1241 RS485 模块通过 RS485 端口与MM440进行通信。 可使用 USS 库控制MM440和读/写MM440参数。该库提供 1 个 FB 和 3 个 FC 来支持 USS 协议。 每个 CM1241 RS485 通信模块较多支持 16 个MM440。连接到一个 CM 1241 RS485 的所有MM440(较多 16 个)是同一 USS 网络的一部分。连接到另一 CM 1241 RS485 的所有MM440是另一 USS 网络的一部分。 因为 S7-1200较多支持三个 CM 1241 RS485 设备,所以用户较多可建立三个 USS 网络,每个网络较多 16 个MM440,总共支持 48 个 USS MM440。各 USS 网络使用各自一的数据块进行管理(使用三个 CM 1241 RS485 设备建立三个 USS网络需要三个数据块)。 同一USS 网络相关的所有指令必须共享该数据块。 这包括用于控制网络上所有MM440的 USS_DRV、USS_PORT、USS_RPM 和USS_WPM 指令。
2. 硬件需求及接线
2.1. 硬件需求
S7-1200 PLC目前有3种类型的CPU:
1)S7-1211C CPU。
2)S7-1212C CPU。
3)S7-1214C CPU。
这三种类型的CPU都可以使用USS通信协议通过通信模块CM1241 RS485来实现S7-1200与MM440变频器的通信。
本例中使用的PLC硬件为:
1) S7-1214C ( 6ES7 214 -1BE30 -0XB0 )
2) CM1241 RS485 ( 6ES7 241 -1CH30 -0XB0 )
3) CSM 1277 ( 6GK7 277 -1AA00 - 0AA0)
本例中使用的MM440变频器硬件为:
1) MM440 ( 6SE6440 - 2AB11 - 2AA1 )
2) MICROMASTER 4 ENCODER MODULE ( 6SE6400 - 0EN00 - 0AA0 )
3) SIEMENS MOTOR ( 1LA7060 - 4AB10 - Z )
4) USS 通信电缆 ( 6XV1830 - 0EH10 )
2.2. 接线
建议使用西门子的网络插头和PROFIBUS电缆。在 S7-1200 CPU 通信口上使用西门子网络插头。
PROFIBUS 电缆的红色导线B 即 RS 485 信号 +,此信号应当连接到 MM 440 通信端口的 P+;绿色导线A 即 RS 485 信号 -,此信号应当连接到 MM 440 通信端口的 N-。
图1: MM440接线端子 表4:MM440端子定义
因为MM 440 通信口是端子连接,所以 PROFIBUS 电缆不需要网络插头,而是剥出线头直接压在端子上。如果还要连接下一个驱动装置,则两条电缆的同色芯线可以压在同一个端子内。PROFIBUS 电缆的红色芯线应当压入端子 29;绿色芯线应当连接到端子 30,如图1、表4所示。完整接线图如图2所示。
河北省西门子变频器总代理商
图2: S7-1200与MM440接线图
a. 屏蔽/保护接地母排,或可靠的多点接地。此连接对抑制干扰有重要意义。
b. PROFIBUS 网络插头,内置偏置和终端电阻。
c. MM 440 端的偏置和终端电阻。
d. 通信口的等电位连接。可以保护通信口不致因共模电压差损坏或通信中断。
e. 双绞屏蔽电缆(PROFIBUS)电缆,因是高速通信,电缆的屏蔽层须双端接地(接 PE)。
注意,以下几点对网络的性能有较为重要的影响。几乎所有网络通信质量方面的问题都与未考虑到下列事项有关:
? 偏置电阻用于在复杂的环境下确保通信线上的电平在总线未被驱动时保持稳定;终端电阻用于吸收网络上的反射信号。一个完善的总线型网络必须在两端接偏置和终端电阻。
? 通信口 M 的等电位连接建议单独采用较粗的导线 ,而不要使用 PROFIBUS 的屏蔽层,因为此连接上可能有较大的电流,以致通信中断。
? PROFIBUS 电缆的屏蔽层要尽量大面积接 PE。一个实用的做法是在靠近插头、接线端子处环剥外皮,用压箍将裸露的屏蔽层压紧在 PE 接地体上(如 PE 母排或良好接地的裸露金属安装板)。
? 通信线与动力线分开布线;紧贴金属板安装也能改善抗干扰能力。驱动装置的输入/输出端要尽量采用滤波装置,并使用屏蔽电缆。
? 在 MM 440 的包装内提供了终端偏置电阻元件,接线时可按说明书直接压在端子上。如果可能,可采用热缩管将此元件包裹,并适当固定。
3. 组态
我们通过下述的实际操作来介绍如何在Step7 Basic V10.5 中组态S7-1214C 和MM440变频器的USS通信。
3.1. PLC 硬件组态
首先在Step7 Basic V10.5中建立一个项目,如图3所示。
图3: 新建S7 1200项目
在硬件配置中,添加CPU1214C和通信模块CM1241 RS485模块,如图4所示:
图4: S7 1200硬件配置
在CPU的属性中,设置以太网的IP地址,建立PG与PLC的连接,如图5所示。
图5: S7 1200 IP地址的设置
3.2. MM440参数设置
我们假定已经完成了驱动装置的基本参数设置和调试(如电机参数辨识等等),以下只涉及与 S7-1200 控制器连接相关的参数。
MM 440 的参数分为几个访问级别,以便于过滤不需要查看的部分。 与 S7-1200 连接时,需要设置的主要有“控制源”和“设定源”两组参数。要设置此类参数,需要“*”参数访问级别,即首先需要把 P0003 参数设置为 3。
控制源参数设置:
控制命令控制驱动装置的启动、停止、正/反转等功能。控制源参数设置决定了驱动装置从何种途径接受控制信号,如表5所示。
表5:控制源由参数 P0700 设置
此参数有分组,在此仅设**组,即 P0700[0]。
设定源控制参数:
设定值控制驱动装置的转速/频率等功能。设定源参数决定了驱动装置从哪里接受设定值(即给定),如表6所示。
表6:设定源由参数 P1000 设置
此参数有分组,在此仅设**组,即 P1000[0]。
控制源和设定源之间可以自由组合,根据工艺要求可以灵活选用。我们以控制源和设定源都来自 COM Link 上的 USS 通信为例,简介 USS 通信的参数设置。
主要参数有:
1. P0700: 设置 P0700[0] = 5,即控制源来自 COM Link 上的 USS 通信;
2. P1000: 设置 P1000[0] = 5,即设定源来自 COM Link 上的 USS 通信;
3. P2009: 决定是否对 COM Link 上的 USS 通信设定值规格化,即设定值将是运转频率的百分比形式,还是**频率值。为0,不规格化 USS 通信设定值,即设定为MM440中的频率设定范围的百分比形式;为1,对 USS 通信设定值进行规格化,即设定值为**的频率数值;
4. P2010: 设置 COM Link 上的 USS 通信速率。根据 S7-1200 通信口的限制,支持的通信波特率如表7所示。
4
|
2400 bit/s
|
5
|
4800 bit/s
|
6
|
9600 bit/s
|
7
|
19200 bit/s
|
8
|
38400 bit/s
|
9
|
57600 bit/s
|
12
|
115200 bit/s
|
表7:通信波特率
5. P2011: 设置 P2011[0] = 0 至 31,即驱动装置 COM Link 上的 USS 通信口在网络上的从站地址;
6. P2012: 设置 P2012[0] = 2,即 USS PZD 区长度为 2 个字长;
7. P2013: 设置 P2013[0] = 4;
8. P2014: 设置 P2014[0] = 0 至 65535,即 COM Link 上的 USS 通信控制信号中断**时时间,单位为 ms;如设置为 0,则不进行此端口上的**时检查;
9. P0971: 设置 P0971 = 1,上述参数将保存入MM 440 的 EEPROM 中。
4. USS通信原理与编程的实现
4.1 S7 1200 PLC与MM440 通过USS通信的基本原理
S7 1200提供了**的USS库进行USS通信,如图6所示:
图6:S7 1200 **的USS库
USS_DRV功能块通过USS_DRV_DB数据块实现与USS_PORT功能块的数据接收与传送,而USS_PORT功能块是S7-1200 PLC CM1241 RS485模块与MM440之间的通信接口。USS_RPM功能块和USS_WPM功能块与MM440的通信与USS_DRV功能块的通信方式是相同的。如图7所示。
图7:通信结构图
4.2. 功能块使用介绍
USS_DRV 功能块是S7-1200 USS通信的主体功能块,接受MM440的信息和控制MM440的指令都是通过这个功能快来完成的。必须在主 OB中调用。
USS_PORT功能块是S7-1200与MM440进行USS通信的接口,主要设置通信的接口参数。可在主OB或中断OB中调用。
USS_RPM功能块是通过USS通信读取MM440的参数。必须在主 OB中调用。
USS_WPM功能块是通过USS通信设置MM440的参数。必须在主 OB中调用。
4.3. S7 1200 PLC进行USS通信的编程
4.3.1. USS_DRV功能块的编程
USS_DRV功能块的编程如图8所示。
图8: USS_DRV功能块的编程
USS_DRV功能块用来与MM440进行交换数据,从而读取MM440的状态以及控制MM440的运行。每个MM440使用一的一个USS_DRV功能块,但是同一个CM1241 RS485模块的USS网络的所有MM440(较多16个)都使用同一个USS_DRV_DB。
USS_DRV_DB: *MM440进行USS通信的数据块。
|
|
RUN: *DB块的MM440启动指令。
|
|
|
OFF2: 紧急停止,自由停车。 该位为0时停车。
|
|
OFF3: 快速停车,带制动停车。该位为0时停车。
|
|
F_ACK: MM440故障确认。
|
|
|
DIR : MM440控制电机的转向。
|
|
|
SPEED_SP: MM440的速度设定值。
|
|
|
NDR: 新数据就绪。
|
|
|
|
ERROR: 程序输出错误。
|
|
|
|
RUN_EN: MM440运行状态指示。
|
|
|
D_DIR: MM440运行方向状态指示。
|
|
|
INHIBIT: MM440是否被禁止的状态指示。
|
|
FAULT: MM440故障。
|
|
|
|
SPEED: MM440的反馈的实际速度值。
|
|
|
DRIVE: MM440的USS站地址。MM440参数P2011设置。
|
PZD_LEN: PZD数据的字数,有效值2,4,6或8个字。MM440参数P2012设置。
|
|
|
|
|
4.3.2. USS通信接口参数功能块的编程
USS通信接口参数功能块的编程如图9所示。
图9: USS通信接口参数功能块的编程
USS_PORT功能块用来处理USS网络上的通信,它是S71200 CPU与MM440的通信接口。每个CM1241 RS485模块有且必须有一个USS_PORT功能块。
PORT: 通信模块标识符:在默认变量表的“常量”(Constants) 选项卡内引用的常量。
BAUD: 指的是和MM440进行通行的速率。 MM440的参数P2010种进行设置。
USS_DB: 引用在用户程序中放置 USS_DRV 指令时创建和初始化的背景数据块。
ERROR: 输出错误。
STATUS:扫描或初始化的状态。
USS_PORT 功能通过RS485通信模块处理 CPU 和变频器之间的实际通信。 每次调用此功能可处理与一个变频器的一次通信。 用户程序必须尽快调用此功能以防止与变频器通信**时。 可在主 OB 或任何中断 OB 中调用此功能。通常从循环中断 OB 调用USS_PORT 以防止变频器**时以及使 USS_DRV 调用的 USS 数据保持较新。
S7-1200 PLC与MM440的通信是与它本身的扫描周期不同步的,在完成一次与MM440的通信事件之前,S7-1200通常完成了多个扫描。
USS_PORT通信的时间间隔是S7-1200与MM440通信所需要的时间,不同的通信波特率对应的不同的USS_PORT通信间隔时间。表8列出了不同的波特率对应的USS_PORT较小通信间隔时间。
表8:不同的波特率对应的USS_PORT较小通信间隔时间
USS_PORT在发生通信错误时,通常进行3次尝试来完成通信事件,那么S7-1200与MM440通信的时间就是USS_PORT发生通信**时的时间间隔。例如:如果通信波特率是9600,那么USS_PORT与MM440通信的时间间隔应当大于较小的调用时间间隔,即大于116.3毫秒而小于349毫秒。S7-1200 USS 协议库默认的通信错误**时尝试次数是2次。
基于以上的USS_PORT通信时间的处理,建议在循环中断OB块中调用USS_PORT通信功能块。在建立循环中断OB块时,我们可以设置循环中断OB块的扫描时间,以满足通信的要求。循环中断OB块的扫描时间的设置如图10所示:
图10:循环中断OB块的扫描时间的设置
4.3.3. USS_RPM功能块的编程
USS_RPM功能块的编程 如图11所示。
图11:USS_RPM功能块的编程
USS_RPM功能块用于通过USS通信从MM440读取参数。
REQ: 读取参数请求。
|
|
|
DRIVE: MM440的USS站地址。
|
|
PARAM: MM440的参数代码。
|
|
INDEX: MM440的参数索引代码
|
|
USS_DB:*MM440进行USS通信的数据块。
|
|
|
|
|
DONE: 读取参数完成。
|
|
|
ERROR: 读取参数错误。
|
|
|
STATUS:读取参数状态代码。
|
|
VALUE: 所读取的参数的值。
|
|
注意:进行读取参数功能块编程时,各个数据的数据类型一定要正确对应。
4.3.4. USS_WPM功能块的编程
USS_WPM功能块的编程如图12所示。
图12:USS_WPM功能块的编程
USS_WPM功能块用于通过USS通信设置MM440的参数。
REQ: 写参数请求。
|
|
|
DRIVE: MM440的USS站地址。
|
|
PARAM: MM440的参数代码。
|
|
INDEX: MM440的参数索引代码。
|
|
EEPROM:把参数存储到MM440的EEPROM。
|
VALUE: 设置参数的值。
|
|
|
USS_DB:*MM440进行USS通信的数据块。
|
|
|
|
|
DONE: 读取参数完成。
|
|
|
ERROR: 读取参数错误状态。
|
|
注意:对写入参数功能块编程时,各个数据的数据类型一定要正确对应。
4.3.5. 常见错误
如果读写同时使能,则报错818A:参数请求通道正在被本变频器的另一请求占用。如图13所示。
图13:读写同时使能报错
如果通信断开,则PORT报错818B,如图14所示。
图14:通信断开报错
如果速度设定值不正确,则报错8186,如图15所示。
图15:速度设定值错误
河北省西门子变频器总代理商